

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Vibrational Studies of Different Modifications of the Sodium Hydrogen Sulphate Crystals

J. Baran^a; M. M. Ilczyszyn^b; M. K. Marchewka^a; H. Ratajczak^{ab}

^a Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw, Poland

^b Faculty of Chemistry, Wroclaw University, Wroclaw, Poland

To cite this Article Baran, J. , Ilczyszyn, M. M. , Marchewka, M. K. and Ratajczak, H.(1999) 'Vibrational Studies of Different Modifications of the Sodium Hydrogen Sulphate Crystals', *Spectroscopy Letters*, 32: 1, 83 — 102

To link to this Article: DOI: 10.1080/00387019909349969

URL: <http://dx.doi.org/10.1080/00387019909349969>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

VIBRATIONAL STUDIES OF DIFFERENT MODIFICATIONS OF THE SODIUM HYDROGEN SULPHATE CRYSTALS

Key Words: Infrared Spectra, Raman Spectra, Sodium Hydrogen Sulphate

J. Baran^a, M.M. Ilczyszyn^b, M.K. Marchewka^a and H. Ratajczak^{a,b}

^aInstitute of Low Temperature and Structure Research, Polish Academy of Sciences,
Okólna 2, 50-950 Wrocław, Poland

^bFaculty of Chemistry, Wrocław University, Joliot-Curie 14, 50-383 Wrocław,
Poland

ABSTRACT

Three modifications of the sodium hydrogen sulphate ($\text{NaHSO}_4 \cdot \text{H}_2\text{O}$, A- NaHSO_4 , B- NaHSO_4) have been prepared. Their vibrational spectra have been measured. The results are discussed in relation to the structures of crystals. The good agreement between the crystal structure, selection rules and vibrational spectra is observed for $\text{NaHSO}_4 \cdot \text{H}_2\text{O}$ crystal. However, the careful analysis of the infrared spectra of both anhydrous modifications (A- NaHSO_4 , B- NaHSO_4) show that neither of them correspond to $\beta\text{-NaHSO}_4$ form. On the other hand, the infrared spectra of A- NaHSO_4 and B- NaHSO_4 modifications show that each of them contain some amount of the $\alpha\text{-NaHSO}_4$ phase.

INTRODUCTION

The sulphuric acid forms a family of hydrogen bonded crystals with general formula $MHSO_4$ where $M=Li^+, Na^+, K^+, Rb^+, Cs^+$ and NH_4^+ . Some of them exhibit very interesting physical properties, *i.e.* a superionic conductivity [1] (at high temperatures) or ferroelectric properties [2]. Therefore, they were a subject of both Raman and infrared studies [3-10]. However, no vibrational data have been published so far for the $LiHSO_4$ and $NaHSO_4$ crystals. This may be related to the hygroscopic properties of these crystals [11, 12]. In spite of that we have succeeded in preparation of the $NaHSO_4$ crystals. Moreover, we have also noticed that different forms of $NaHSO_4$ crystal were obtained ($NaHSO_4 \cdot H_2O$, A- $NaHSO_4$ and B- $NaHSO_4$) depending on the method of preparation. This conclusion is consistent with an observation made by Sonneveld and Visser [13,14]. Thus, in order to complete the vibrational studies of $MHSO_4$ family, the infrared spectra of all modifications of $NaHSO_4$ crystal have been recorded and are reported in the presented contribution. The vibrational spectra of $NaHSO_4$ crystals are discussed with respect to their crystal structures and in relation to the vibrational spectra of other hydrogen sulphates.

EXPERIMENTAL

The sodium hydrogen monohydrate ($NaHSO_4 \cdot H_2O$) was prepared by mixing Na_2SO_4 and a 96% solution of H_2SO_4 in water. The best $NaHSO_4 \cdot H_2O$ crystals were obtained from aqueous solution containing Na^+ and H_2SO_4 in ratio 1:2.8 to 1:3. Deuterated crystals were obtained by dissolving the Na_2SO_4 in D_2O containing the H_2SO_4 in the amount corresponding to the ratio mentioned above. The good isotopic substitution was reached by fourfold recrystallization from the solution in D_2O .

The $NaDSO_4$ was prepared by dehydration of the monohydrate $NaDSO_4 \cdot D_2O$ crystal. The dehydration was carried out by use of a drying agent (P_2O_5) at *ca.* 110°C. However, the attempts to prepare anhydrous modifications of $NaHSO_4$ crystal by dehydration the $NaHSO_4 \cdot H_2O$ at 110°C (for α - $NaHSO_4$, [14]) and in the region of temperature between 0 -25°C (for β - $NaHSO_4$ [13]) were not successful. Therefore, in order to obtain the α - $NaHSO_4$ crystals, the method described in [16]

was used. The appropriate amounts of Na_2SO_4 and H_2SO_4 were mixed and heated up to 150-160° C until the transparent liquid was obtained. Then, the liquid was divided into two parts. One part was poured into paraffin oil. In a few minutes crystals started to grow up. The second part was cooled down and at *ca.* 140° C the crystals appeared. The infrared spectra of α - NaHSO_4 obtained by the methods mentioned above are similar in the region below 1400 cm^{-1} and exhibit some differences in the region above 1400 cm^{-1} .

The β - NaHSO_4 compound was prepared by mixing Na_2SO_4 and H_2SO_4 in the ratio of 1:1 and heating up to the temperature range of 110-130° C and annealing for few minutes. On cooling down the β - NaHSO_4 crystals started to crystallise.

In that procedure the anhydrous modifications of NaHSO_4 were obtained by the method different than that described in [13,14], therefore, the other notations for the products were used: A- NaHSO_4 (for the form prepared at *ca.* 140° C) and B- NaHSO_4 (for the form obtained in the 110-130° C temperature region).

Since all obtained modifications of anhydrous NaHSO_4 (*i.e.* NaDSO_4 , A- NaHSO_4 , B- NaHSO_4) and $\text{NaDSO}_4\text{D}_2\text{O}$ are highly hygroscopic, therefore the crystals were stored under paraffin oil.

The infrared spectra of polycrystalline samples for all obtained crystals have been recorded as an emulsion in nujol at room temperature with a spectrophotometer Perkin-Elmer 180 in the 4000-300 cm^{-1} frequency region. The FT-Raman spectra of $\text{NaHSO}_4\text{H}_2\text{O}$ crystal were recorded by means of FRA-106 attachment to the Bruker IFS-88 spectrometer.

Crystal Structure and Selection Rules

The $\text{NaHSO}_4\text{H}_2\text{O}$ crystal belongs to the $Cc = C_2^4$ space group of the monoclinic system with $Z=2$ formal molecules in the primitive unit cell [15]. The hydrogen sulphate anions are linked by hydrogen bonds (with the O···O distances equal to 2.658 Å) into infinite zigzag chains spreading along the [101] direction. The water molecules are tied to the HSO_4^- chain by two weak hydrogen bonds with the O···O distances equal to 2.839 and 2.898 Å (Fig. 1).

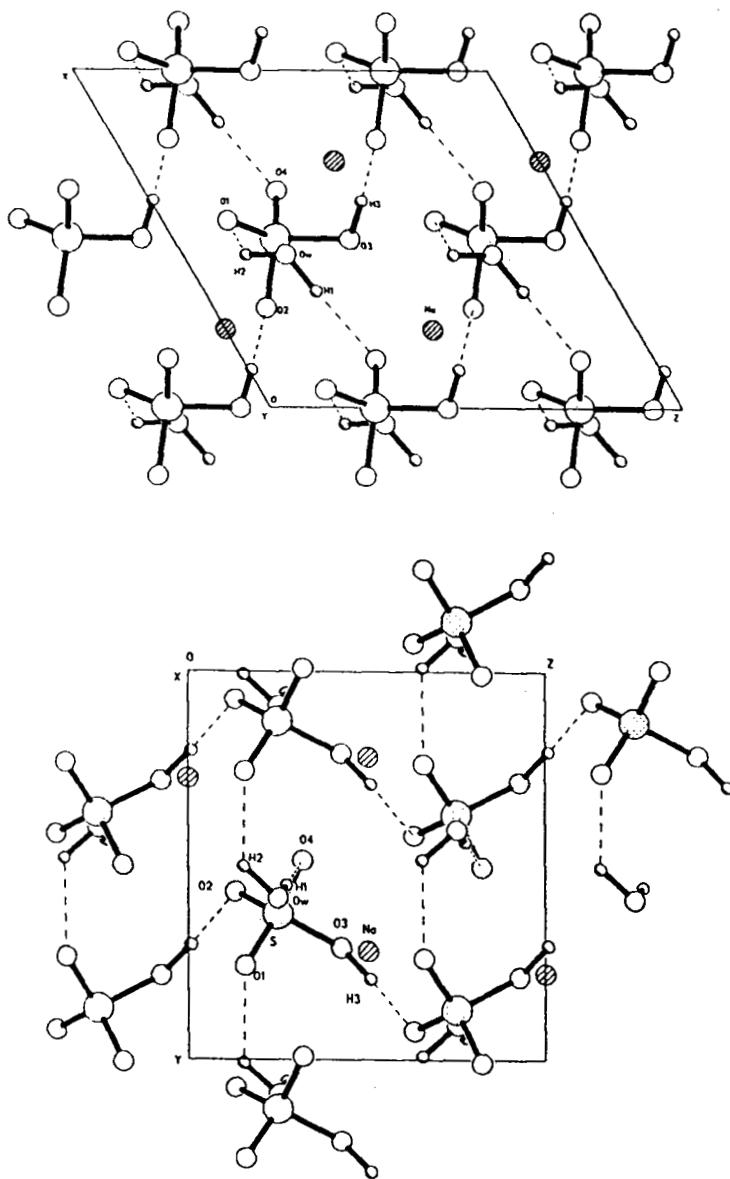


FIG. 1 Projections of the Crystal Structure of the $\text{NaHSO}_4 \cdot \text{H}_2\text{O}$ onto *ac* (upper) and *bc* (lower) Planes.

The β -NaHSO₄ crystal belongs to the $P2_1/n$ space group of the monoclinic system with $Z=4$ molecules in the primitive unit cell [13]. The HSO₄⁻ anions are linked into cyclic dimers (Fig. 2) by medium strong hydrogen bonds with the O...O distances equal to 2.67 Å.

The α -NaHSO₄ form crystallises in the $P\bar{1}$ space group of the triclinic system [14]. It contains two types of the HSO₄⁻ anions (HS(1)O₄⁻ and HS(2)O₄⁻) which are linked by means of hydrogen bonding between O(1) and O(5) with O...O distance equal to 2.690(8) Å (Fig. 3). The disorder of the H atoms in the HS(2)O₄⁻ anion was found in the α -NaHSO₄ phases. As the H atom is distributed between the O(7) and O(8) atoms, therefore, the hydrogen bonding may exist between the O(6) and O(8') atoms ($R_{\infty}=2.692$ Å) as well as between the O(7) and O(7') atoms ($R_{\infty}=2.497$ Å). Due to this the HS(2)O₄⁻ anions form infinite chains in the [110] direction.

As mentioned above the hydrogen sulphate anions form dimers (β -NaHSO₄, α -NaHSO₄) or chains (NaHSO₄·H₂O, α -NaHSO₄) in the studied crystals. The symmetry of dimers is C_i . The adjacent hydrogen sulphate anions in the chains are related by the glide plane which is approximated by the C_s group. The correlation diagrams between the symmetry of free SO₄²⁻ anion (T_d), the symmetry of free HSO₄⁻ anion (C_{3v}), the site symmetry (C_1) (Table 1) and the symmetry of dimer or chain (Table 2) are very helpful in the discussion of the internal vibrations of the hydrogen sulphate anion. The correlation diagram (Table 2) shows that for the dimer each mode splits into two components; one allowed only in the IR spectrum (A_u) and the second one allowed only in the Raman spectrum (A_g). For the chain type structure each mode also splits into two components ($A' + A''$), however, both simultaneously allowed in the IR and Raman spectra. Thus, taking this into account one should expect in the 1100-1000 cm⁻¹ region of IR spectra either one band or two bands for dimer or for chain, respectively (Table 2). Moreover, taking into account the geometry of the HSO₄⁻ anions in the studied crystal [6,13,15] one can suggest that the internal vibrations of the HSO₄⁻ anion might be considered according to one of three models described in [3]. In these models the structure of HSO₄⁻ ion is approximated by the formula HOSO₃⁻ and the vibrations of the longest S-O_H bonds are treated

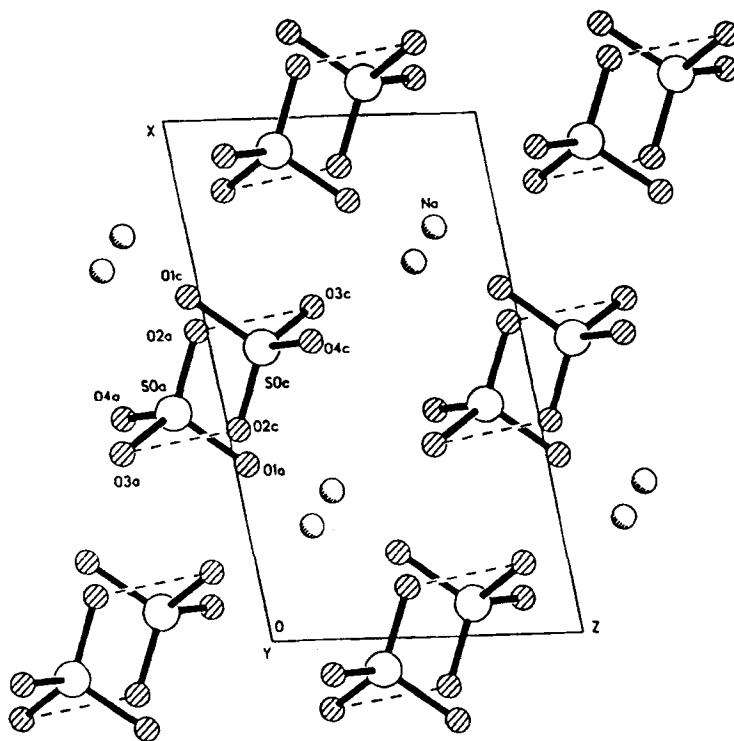


FIG. 2 Projection of the Crystal Structure of the β -NaHSO₄ onto ac Plane.

independently from the vibrations of the SO₃ group, which has two similar S-O bonds and one slightly longer S-O bond.

RESULTS AND DISCUSSION

The vibrational spectra of polycrystalline samples of hydrated and anhydrous modifications of the NaHSO₄ crystal are shown in Figs. 4 and 5, respectively. The wavenumbers of the bands observed in the spectra are listed in Table 3. The bands observed in the 4000-300 cm⁻¹ frequency region are derived from internal vibrations of sulphate anion, water molecule and hydrogen bonds.

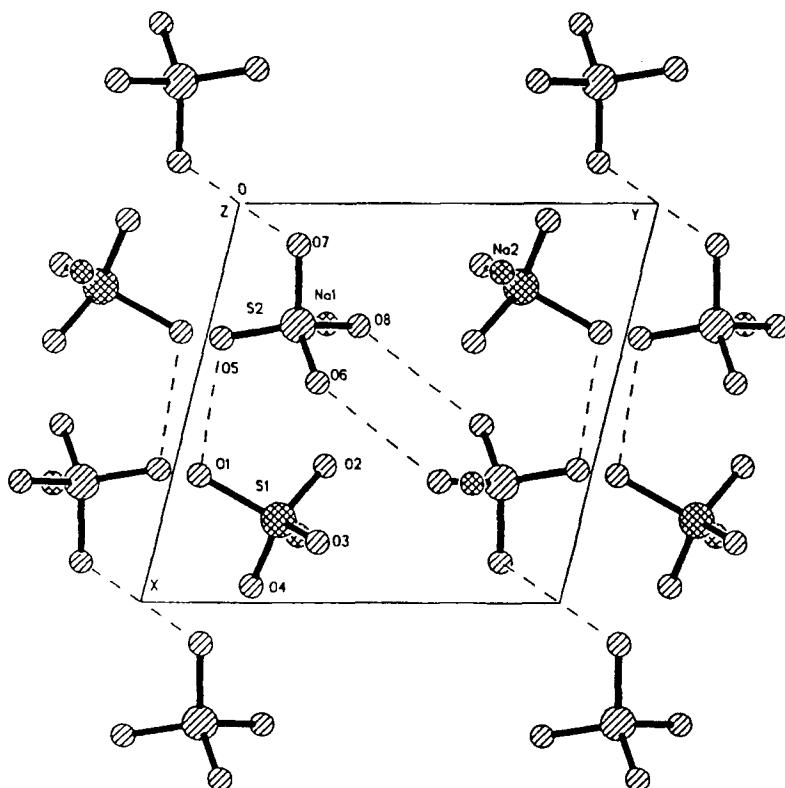
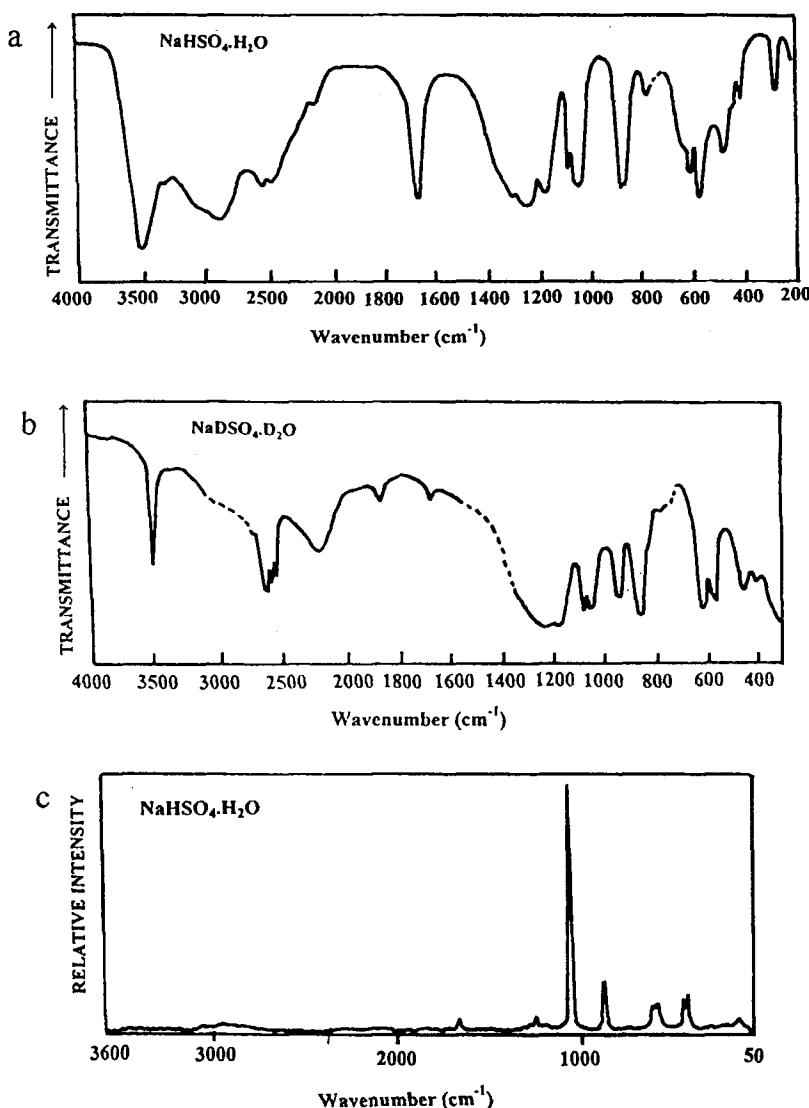


FIG. 3 Projection down c axis of the Crystal Structure of the α -NaHSO₄ onto ab Plane.

The Vibrational Spectra of NaHSO₄·H₂O

Internal vibrations of the sulphate anion

Two strong bands observed at 1078 and 1040 cm⁻¹ in the IR spectrum of NaHSO₄·H₂O and at 1078 and at 1048 cm⁻¹ in the IR spectrum of deuterated species have been assigned to the $\nu_{s\text{SO}_3}$ vibration which corresponds to the ν_1 (981 cm⁻¹) mode of the „free” SO₄⁻² anion. Note that this observation as well as an assignment are consistent with the prediction of selection rules (Table 2). Unexpectedly, in the


TABLE 1
Correlation Diagram for the Internal Vibrations of the Sulphate Ions in the
 $\text{NaHSO}_4 \cdot \text{H}_2\text{O}$, $\alpha\text{-NaHSO}_4$ and $\beta\text{-NaHSO}_4$.

Symmetry of the "free" SO_4^{2-}	Symmetry of the "free" HSO_4^-	Site symmetry	Wavenumbers (cm^{-1}) expected for the internal vibrations of HSO_4^- anion
T_d	C_{3v}	C_1	
A_1 — $\nu_1 = 981$	— A_1 —	A — $\nu_1 \text{SO}_3^*$	ca. 1000-1100
E — $\nu_2 = 451$	— E —	A — $\delta\text{S-O}_\text{H}$	ca. 420-440
F_2 — $\nu_3 = 1104$	— A_1 —	A — $\gamma\text{S-O}_\text{H}$	
F_2 — $\nu_4 = 613$	— E —	A — $\nu_2 \text{SOH}$	ca. 860 ± 20
		A — $\nu_3 \text{SO}_3^*$	ca. 1170
		A — $\nu_4 \text{SO}_3^*$	ca. 1200
	A_1 —	A — $\delta_1 \text{SO}_3$	ca. 570 ± 10
	E —	A — $\delta_2 \text{SO}_3$	ca. 600
		A — $\delta_3 \text{SO}_3$	ca. 580-590

*the notation was taken from [3].

TABLE 2
The Correlation Diagram Between the Site Symmetry and Symmetry of Dimer/Chain for Internal Vibration of HSO_4^- anions in $\text{NaHSO}_4 \cdot \text{H}_2\text{O}$, $\alpha\text{-NaHSO}_4$ and $\beta\text{-NaHSO}_4$.

Site Symmetry	Symmetry of Dimer	Activity	Wavenumbers (cm^{-1}) Expected for the Internal Vibrations of the HSO_4^- Anion
C_1	C_1		
A —	A_u —	IR	ca. 1070
	A_g —	R	
Site Symmetry	Symmetry of Chain	Activity	Wavenumbers (cm^{-1}) Expected for the Internal Vibrations of the HSO_4^- Anion
C_1	C_s		
A —	A' —	IR, R	ca. 1000
	A'' —	IR, R	ca. 1060

FIG. 4 Vibrational Spectra of Polycrystalline Samples:
 a) Infrared Spectrum of $\text{NaHSO}_4 \cdot \text{H}_2\text{O}$ Crystal Recorded as an Emulsion in Nujol and Fluorolube
 b) Infrared Spectrum of $\text{NaDSO}_4 \cdot \text{D}_2\text{O}$ Crystal Recorded as an Emulsion in Nujol.
 c) Raman Spectrum of $\text{NaHSO}_4 \cdot \text{H}_2\text{O}$ Crystal.

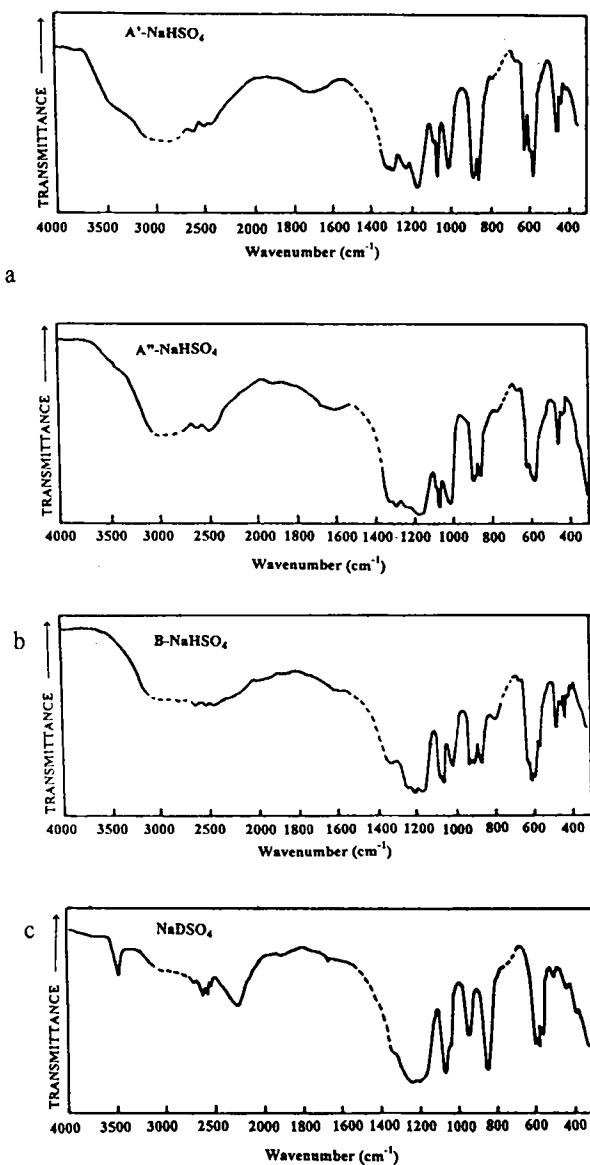


FIG. 5 Infrared Spectra of Polycrystalline Sample of
a) A'-NaHSO₄ and A''-NaHSO₄; b) B-NaHSO₄ and c) NaDSO₄ Recorded
as an Emulsion in Nujol.

Raman spectrum only one band is observed in this region. It appears at 1060 cm^{-1} and exhibits the highest intensity in the spectrum. The bands which appear in the $1078\text{--}1069\text{ cm}^{-1}$ region may also arise from stretching vibration of S-O bond with medium S-O distance (*ca.* 1.47\AA).

The bands due to the stretching vibrations derived from the v_3 mode of the „free” SO_4^{2-} anion occur in two regions ($900\text{--}800$ and $1243\text{--}1170\text{ cm}^{-1}$) in the case of hydrogen sulphate anion. The $v\text{S-O}_\text{H}$ vibration gives rise to the bands observed at 873 cm^{-1} in the spectrum of $\text{NaHSO}_4\cdot\text{H}_2\text{O}$ and at 856 cm^{-1} in the spectrum of the deuterated analogue. The Raman counterpart of $v\text{S-O}_\text{H}$ mode appears at 874 cm^{-1} . The bands which appear in the latter region ($1243\text{--}1170\text{ cm}^{-1}$) one can attribute in two different ways. A similar problem occurs in the infrared spectra of KHSO_4 [6] and KHSeO_4 [17]. Thus, the bands at 1170 and 1175 cm^{-1} may arise from $v_s\text{SO}_3$ mode. The bands observed at 1243 cm^{-1} in the $\text{NaHSO}_4\cdot\text{H}_2\text{O}$ and at 1240 and 1206 cm^{-1} in the spectra of $\text{NaDSO}_4\cdot\text{D}_2\text{O}$ have been attributed to the $v_a\text{SO}_3$ vibration. However, the bands observed in the $1243\text{--}1170\text{ cm}^{-1}$ region might be also ascribed to the $v_a\text{SO}_2$ and $v_s\text{SO}_2$ vibrations (*e.g.* out-of-phase and in-phase coupling between the stretching vibrations of the two shortest S-O bonds; $1.44\text{--}1.45\text{\AA}$). Note that both those assignments seem to be reasonable. The bands of the $v_s\text{SO}_3$, $v_a\text{SO}_3/v_a\text{SO}_2$ and $v_s\text{SO}_2$ in the Raman spectra show very low intensity and appear at 1241 and 1191 cm^{-1} .

The assignment of the bands due to deformation vibrations of the hydrogen sulphate anions presented here is similar to that proposed for other hydrogen sulphates [3, 6]. The absorption arising from bending modes is observed in the $650\text{--}400\text{ cm}^{-1}$ region. The strong bands at 603 and at 574 cm^{-1} observed in the infrared spectrum and weak doublet at 612 and 577 cm^{-1} observed in Raman spectrum are assigned to the $\delta_a\text{SO}_3$ and $\delta_s\text{SO}_3$ modes, respectively. Deuteration leads to the noticeable change in the shape and number of bands. They become narrower and each of them splits into two well defined components (Fig. 4b).

The bands observed at 454 and 395 cm^{-1} in the infrared spectrum of $\text{NaDSO}_4\cdot\text{D}_2\text{O}$ and at 476 , 437 and 411 cm^{-1} in the infrared spectrum and at 435 and

TABLE 3
The Wavenumbers (cm^{-1}) Observed in the Vibrational Spectra of Polycrystalline Sample of
 $\text{NaHSO}_4 \cdot \text{H}_2\text{O}$, $\text{NaDSO}_4 \cdot \text{D}_2\text{O}$, A- NaHSO_4 , B- NaHSO_4 , NaDSO_4 Crystals*.

$\text{NaHSO}_4 \cdot \text{H}_2\text{O}$ IR	$\text{NaDSO}_4 \cdot \text{D}_2\text{O}$ IR	NaDSO_4 IR	B- NaHSO_4 IR	A'- NaHSO_4 IR	A''- NaHSO_4 IR	Assignments
3494vs						
3470vssh	3482s	3475w				$\nu_3 \text{H}_2\text{O}$
3284m						$\nu_1 \text{H}_2\text{O}$
3040ssh						
2900s	2940(2.8)	~2900s	~2900s 2640w	2905s	~2900s	$\nu\text{OH(A)}$
				2605m	2600m	$\nu\text{OH(B)}$
		2606s	2605w			$\nu_3 \text{D}_2\text{O}$
		2570s	2569w			$\nu_3 \text{D}_2\text{O}$
		2540s	2539w			$\nu_3 \text{D}_2\text{O}$
2555m			2520w	2497m	2490m	$\nu\text{OH(B)}$
2452m			2430w	2420m	2400msh	$\nu\text{OH(B)}$
		2390msh	2260m	2300w		νOD
				2200wsh		$\nu\text{OH(B)}$
2125w		2197m				$\nu\text{OD(A)}$
						$\nu\text{OH(B)}$
						$\nu\text{OD(A)}$
						$\nu\text{OH(B)}$
		1860w	1900vw	1995vw	1945vw ^b	
				1850vw		$\nu\text{OD(B)}$
1660s	1656(4.7)	1661w	1663vw		1730wb	$\nu\text{OH(C)}$
					1620wsh	$\nu_2 \text{H}_2\text{O}$
					1615wb	$\nu\text{OH(C)}$
				1575vw ^b		$\nu\text{OH(C)}$
1355ssh			1333s	1335s	1320vs	δOH
1299vs	1308(2.2)				1290vs	δOH
	1268(3.1)				1290vs	
1243vs	1241(6.0)	1240vs	1240vs	1234vs	1230vs	$\nu_a \text{SO}_3$ or $\nu_a \text{SO}_2$ $\uparrow(\nu_3 \text{SO}_4^{2-})$
		1206vs	1200vs	1207vs		
1170vs	1191(3.0)	1175vs	1180vs	1170vs	1173vs	$\nu_a \text{SO}_3$ or $\nu_a \text{SO}_2$ ($\nu_1 \text{SO}_4^{2-}$)
				1080vs	1085msh	
1078vs	1060(100)	1078vs	1070vs	1061vs	1085ssh	
					1069vs	$\nu_a \text{SO}_3$ $\uparrow(\nu_1 \text{SO}_4^{2-})$
1040vs		1048vs	1045ssh	1011s	1008s	$\nu_a \text{SO}_3$ ($\nu_1 \text{SO}_4^{2-}$)

TABLE 3 (continued)

The Wavenumbers (cm^{-1}) Observed in the Vibrational Spectra of Polycrystalline Sample of $\text{NaHSO}_4\cdot\text{H}_2\text{O}$, $\text{NaDSO}_4\cdot\text{D}_2\text{O}$, A- NaHSO_4 , B- NaHSO_4 , NaDSO_4 Crystals*.

$\text{NaHSO}_4\cdot\text{H}_2\text{O}$ IR	$\text{NaDSO}_4\cdot\text{D}_2\text{O}$ Raman**	NaDSO_4	B- NaHSO_4	A'- NaHSO_4	A''- NaHSO_4	Assignments
		939s 934ssh	945s			
873vs	874(20.5)			919s 899s 869s	886vs 875s	890vs 875vs
860vs		856vs	848s		853vs	851vs
773m		772w		790m	773w	770w
				664w	660w	660w
625ssh	655(3.1)					
603vs	612(11.5)	610vs 599vssh	603s	614s 600vs	613s 593s	613s 593s
574vs	577(12.2)	575ssh 565vs	589vs	589vs 563s 509w	580ssh 576vs	589ssh 575vs
476s		454s		473m 452m	454m	450m
437ssh	435(14.0)		437w	437m 425w	433m	430w
411m	411(15.9)	395s 3445vs	390m	405w	416w 407w	
263w	278(2.8) 224(3.4) 188(3.4) 140(5.7) 87(2.9)					

*Abbreviations: vs-very strong; s-strong; m-medium; w-weak; sh-shoulder;
 ν -stretching vibration; δ -deformation vibration; τ -twisting vibration.

**Relative intensities of the bands (in brackets) are given in relation to the strongest band
(at 1060 cm^{-1} ;intensity=100) in the spectrum.

411 cm^{-1} in the Raman spectrum of $\text{NaHSO}_4\cdot\text{H}_2\text{O}$ are due to deformation modes of the $\text{S}-\text{O}_{\text{H}}$ bond. It should be noticed that unambiguous attribution of the bands arising from deformation vibrations of hydrogen sulphate anion is not easy. They may couple with deformation vibration ($\gamma\text{OH}/\gamma\text{OD}$) of hydrogen bond. Moreover, in the infrared spectrum of the $\text{NaHSO}_4\cdot\text{H}_2\text{O}$ the bands due to the libration modes of water molecule also appear in the $650\text{--}400 \text{ cm}^{-1}$ region.

Hydrogen bond and water molecule vibrations.

The $\text{NaHSO}_4 \cdot \text{H}_2\text{O}$ crystal contains two types of hydrogen bonds [15]. The weak hydrogen bonds with the O...O distances in the range of 2.83-2.89 Å are formed between the oxygen atom of water molecule and the oxygen atoms of the hydrogen sulphate anions. Since these hydrogen bonds are rather weak, therefore one can expect quite small changes in the water molecule vibrations. The doublet of bands observed in the infrared spectrum at 3494 cm^{-1} (very strong) and at 3284 cm^{-1} (medium) has been attributed to the stretching vibrations of water molecules (ν_3 and ν_1 , respectively). Bands due to stretching vibrations of water molecule have not been observed in the FT-Raman spectrum as they are outside of the detector sensitivity. The band of $\delta\text{H}_2\text{O}$ vibration has been identified at 1660 cm^{-1} . It appears to be strong and relatively sharp. Its Raman counterpart is observed at 1656 cm^{-1} and exhibits low intensity. However, the absorption arising from the libration mode of the water molecule appears as a diffused broad band in the 650-400 cm^{-1} region of the infrared spectra. The detailed determination of its position is very difficult because in this region the bands of the bending vibrations of hydrogen sulphate anion also appear. Any bands due to the libration mode of water molecule have not been identified in the Raman spectrum. On deuteration the bands due to stretching vibration of the water molecule become narrow and shift to lower frequency (2605, 2569 and 2539 cm^{-1}). The bands derived from the $\delta\text{D}_2\text{O}$ and libration modes in the spectra of deuterated species have not been identified. Note that absorption pattern due to internal vibrations of water molecule as well as the assignment is consistent with that proposed for $\text{CsHSu} \cdot \text{H}_2\text{O}$ [18] and $\text{K}_2\text{HPO}_4 \cdot 3\text{H}_2\text{O}$ [19] crystals.

The second hydrogen bond with the O...O distances equal to 2.65(8) Å links the hydrogen sulphate anions into infinitive chains. The absorption due to the νOH mode of this hydrogen bond should appear as a characteristic broad triplet (so-called A,B,C bands [20]) and it should be similar to those observed in other hydrogen sulphates [3,6] and hydrogen selenates [17]. Since the hydrogen bond in $\text{NaHSO}_4 \cdot \text{H}_2\text{O}$ crystal is a little weaker than in other hydrogen sulphates and selenates [3,6,17], the ABC bands should appear at higher wavenumbers. Contrary to expectation, a careful

examination of the infrared spectrum above 1600 cm^{-1} shows that the absorption due to νOH vibration exhibits only AB structure. The A band is observed at 2900 cm^{-1} with the shoulder at 3040 cm^{-1} . The B band has maximum at about 2500 cm^{-1} and exhibits additional structure with maxima at 2555 , 2452 and 2125 cm^{-1} . This observation can be easily explained. The ABC structure of the νOH absorption arise from a Fermi resonance of the νOH mode with the overtones of the δOH (B) and γOH (C) bending modes [21-23]. In our case only the overtone of the δOH mode fulfils the conditions for the Fermi resonance, whereas the overtone of the γOH mode ($2\times773\text{ cm}^{-1}$) is far from the νOH band. Therefore, the overtone of the γOH may appear as a very weak band. However, in the $1600\text{-}1400\text{ cm}^{-1}$ region no bands are observed. A similar observation was made for the νOH absorption of the dimer hydrogen bond in KHSO_4 [6] crystal. In the Raman spectrum only A band is observed. It appears as a very broad and weak band with maximum at 2940 cm^{-1} . In the spectrum of $\text{NaDSO}_4\text{-D}_2\text{O}$ crystal the νOD absorption appears in the $2500\text{-}1800\text{ cm}^{-1}$ region and exhibits simpler shape then that of the νOH . The broad and intense band at 2197 cm^{-1} is assigned to the A component of νOD absorption, the weak and sharp band at 1860 cm^{-1} is analogue of the B component. The bands due to bending in-plane (δOH) and out-of-plane (γOH) vibrations of hydrogen bond are identified at 1355 , 1299 and 773 cm^{-1} , respectively. However, the deuterated counterparts have only been observed for δOD mode at 939 and 934 cm^{-1} .

The IR Spectra of the Anhydrous Modifications of the Sodium Hydrogen Sulphate (B- NaHSO_4 , A- NaHSO_4 and NaDSO_4).

Internal vibrations of sulphate anions

Taking into account the crystal structure of $\beta\text{-NaHSO}_4$ compound [13] one expects only one band arising from the $\nu_s\text{SO}_3$ vibration (Table 2) in the $1100\text{-}1000\text{cm}^{-1}$ region of the infrared spectrum. Contrary to expectation, three strong bands are observed (strong doublet at 1080 and 1061 cm^{-1} and broad band at 1011 cm^{-1}) in the that region (Fig.5b). This observation allows to suggest that the anhydrous modification of sodium hydrogen sulphate obtained by us and called as B- NaHSO_4

very likely does not correspond to the β -NaHSO₄ form. However, in the IR spectrum of NaDSO₄ crystal only one very strong band at 1070 cm⁻¹ is observed in the 1100-1000 cm⁻¹ region. The shoulder at 1045 cm⁻¹ is probably caused by an internal vibration of the D₂O molecule. Moreover, in the spectrum of NaDSO₄ the band due to γ OD vibration is observed at 509 cm⁻¹. Its counterpart in the spectrum of β -NaHSO₄ should appear at *ca.* 712 cm⁻¹ ($509\text{ cm}^{-1} \times 1.4 = 712\text{ cm}^{-1}$). However, in the infrared spectrum of B-NaHSO₄ near this wavenumber no band is observed. So, these two observations allow us to suppose that the deuterated counterpart of β -NaHSO₄ phase was obtained. The comparison of the infrared spectra of NaDSO₄·D₂O and NaDSO₄ shows that NaDSO₄ sample obtained by us includes a small amount of the NaDSO₄·D₂O.

Detailed examination of the infrared spectra of A-NaHSO₄ and B-NaHSO₄ crystals reveals that some frequency regions are similar (*e.g.* in the 1100-1000 cm⁻¹ region, compare Fig. 5a and Fig. 5b) and the others exhibit differences (1350-1100 cm⁻¹, 950-800 cm⁻¹ region and below 700 cm⁻¹). This observation leads to the following question: Which modification of the anhydrous sodium hydrogen sulphate (A-NaHSO₄ or B-NaHSO₄) crystals was obtained by us? The crystal structure of α -NaHSO₄ modification should be considered in order to answer this question. As follows from the X-ray data [14] for the α -NaHSO₄ crystal, the hydrogen atom of the HS(2)O₄⁻ anion is disordered and can occupy two positions. If we assume that it is localised between O(6) and O(8') atoms and O(8) and O(6') atoms, the HS(2)O₄⁻ anions will form only dimers and HS(1)O₄⁻ anions are linked to these dimers by means of the O(1)…O(5) hydrogen bond (Fig. 3). In such a case one can expect two bands in the 1100-1000 cm⁻¹ region; one band arising from the dimer and the second one related to the HS(1)O₄⁻ anion. In the infrared spectrum of the A-NaHSO₄ (Fig. 5a, Table 3), the strong band at 1069 cm⁻¹ and strong and broad band at 1008 cm⁻¹ is observed. The former may arise from the ν_s SO₃ (ν_1 SO₄⁻²) vibration of dimer, the latter may be related to symmetrical stretching vibration of HS(1)O₄⁻ anion. The shoulder observed at 1085 cm⁻¹ may be assigned to a combination mode [24]. The assumption presented above is also supported by the bands at 790 and 664 cm⁻¹ (B-

NaHSO_4) and at 773 and 660 cm^{-1} (A- NaHSO_4) in the spectra of both anhydrous modifications. They are derived from the deformation modes γOH of the chain hydrogen bond (bands at higher frequencies) and dimer hydrogen bond (bands at lower frequencies). At similar wavenumbers the bands due to γOH mode of chain and dimer hydrogen bond were observed in the spectra of KHSO_4 crystal [6].

However, if we assume that the hydrogen atom of the $\text{HS}(2)\text{O}_4^-$ anion in $\alpha\text{-NaHSO}_4$ crystal is distributed between O(7') and O(8) atoms the excess of the bands observed in the 1100-1000 cm^{-1} region (doublet at 1080 and 1061 cm^{-1} and band at 1011 cm^{-1}) of the B- NaHSO_4 spectrum may be easily explained. Thus, in this case the $\text{HS}(2)\text{O}_4^-$ anions may be joined into infinitive chains in the [110] direction to which the $\text{HS}(1)\text{O}_4^-$ anions are linked by means of the O(1)…O(5) hydrogen bond. If so, the doublet observed at 1080 and 1061 cm^{-1} may arise from the $\nu_s\text{SO}_3(\nu_1\text{SO}_4)$ vibration of chain, however the band which appears at 1011 cm^{-1} may be related to the $\nu_s\text{SO}_3(\nu_1\text{SO}_4)$ vibration of the $\text{HS}(1)\text{O}_4^-$ anion.

Detailed analysis of the infrared spectra of A- NaHSO_4 and B- NaHSO_4 crystal in the 1100-1000 cm^{-1} frequency region reveals that both infrared spectra exhibit some absorption features expected for the $\alpha\text{-NaHSO}_4$ modification. However, it is quite difficult to decide which structure of the anhydrous modification of sodium hydrogen sulphate proposed by us is closer to that followed from the X-ray methods and denoted as $\alpha\text{-NaHSO}_4$ [14].

The bands due to other internal vibrations of hydrogen sulphate anions observed in both A- NaHSO_4 and B- NaHSO_4 crystals are listed in Table 3. The proposed assignments are also given there. Note that in most cases the positions and shape of the bands due to internal vibrations of hydrogen sulphate anions observed in the infrared spectra of monohydrous and anhydrous modifications of NaHSO_4 crystal are different.

Hydrogen bond vibrations

In the infrared spectra of both A- NaHSO_4 and B- NaHSO_4 crystals above 1500 cm^{-1} region an absorption with characteristic ABC structure is observed. The A band

appears at *ca.* 2900 cm^{-1} , the B band occurs at *ca.* 2500 cm^{-1} and exhibits additional structure with maxima at 2640, 2520 and 2300 cm^{-1} in the spectrum of B-NaHSO₄ and at *ca.* 2605, *ca.* 2497 and *ca.* 2420 cm^{-1} in the spectrum of A-NaHSO₄. The C band appears to be less intense than the A and B bands in both spectra and it is located at 1575 cm^{-1} in the spectrum of B-NaHSO₄ and at 1730 and 1615 cm^{-1} in the spectra of A'-NaHSO₄ and A''-NaHSO₄, respectively. The presence of the ABC bands in infrared spectra are consistent with their origin from the νOH vibration of the medium hydrogen bonds [20, 21] with an O···O distance equal *ca.* 2.65 Å. The bands due to the in-plane deformation vibration of hydrogen bond (δOH) appear at 1335 cm^{-1} in the spectrum of B-NaHSO₄ and at 1320 and 1290 cm^{-1} in the spectrum of A-NaHSO₄. The bands due to the out-of-plane γOH mode are identified at 790 and 664 cm^{-1} and at 773 and 660 cm^{-1} in the spectra of B-NaHSO₄ and A-NaHSO₄, respectively.

CONCLUSION

The good agreement is observed between the vibrational spectra of NaHSO₄·H₂O crystal and its crystal structure. Two bands at 1078 and 1040 cm^{-1} are observed in the 1100-1000 cm^{-1} region of infrared spectrum. This region is very important for distinction of the hydrogen sulphate anions linked either into dimers or chains(by the hydrogen bonds). This observation shows that the hydrogen sulphate anions are linked into infinitive chains by hydrogen bonds that is consistent with the reported X-ray data. The infrared spectra in the region above 1800 cm^{-1} is dominated by the absorption with a characteristic AB structure arising from the stretching vibration νOH of the medium strong hydrogen bond linking the HSO₄⁻ anions into infinitive chain.

The lack of correlation between the infrared spectra of the anhydrous modification (B-NaHSO₄) of NaHSO₄ obtained by us and the crystal structure of β -NaHSO₄ phase shows that the obtained compounds (B-NaHSO₄) do not correspond to the β -NaHSO₄ phase. However the dehydration of NaDSO₄·D₂O gives the β -NaDSO₄ crystals with only a small contamination of the NaDSO₄·D₂O.

The infrared spectra of A-NaHSO₄ and B-NaHSO₄ crystal reveal that both anhydrous modifications of the sodium hydrogen sulphate obtained by us show features expected for the α -NaHSO₄ phase. But it is very difficult to decide which anhydrous modification exhibits the structure much closer to that of the α -phase.

ACKNOWLEDGEMENTS

This research was supported by the Polish State Committee for Scientific Research (grant No. 2P303 11006).

REFERENCES

1. Baranov A. J., Shuvalov L. A. and Shchagine N. M. Superionic Conductivity and Phase Transitions in Cesium Hydrogen Sulfate (CsHSO₄) and Cesium Hydrogen Selenate (CsHSeO₄) Crystal. Pis'ma Zh. Eksp. Teor. Fiz. 1982; 36: 381-384.
2. Pepinsky R., Vedam K., Hoshino S. and Okaya Y. Ammonium Hydrogen Sulfate: a new Ferroelectric with low Coercive Field. Phys. Rev. 1958; 111: 1508-1510.
3. Baran J. Polarized Infrared and Raman Spectra of a CsHSO₄ Single Crystal. J. Mol. Struct. 1987; 162: 211-228.
4. Phan-Thi M., Colomban Ph., Novak A. and Blinc R. Vibrational Spectra of and Phase Transitions in Caesium Hydrogen Sulphate. J. Raman Spectrosc. 1987; 18: 185-194.
5. Baran J. Polarized Infrared Spectra of CsDSO₄ Single Crystal. J. Mol. Struct. 1989; 192: 1-13.
6. Baran J. Polarized Infrared Spectra of KHSO₄ and KDSO₄ Single Crystals. J. Mol. Struct. 1988; 172: 1-13.
7. Bazhulin P. A., Myasnikova T. P. and Rakov A. V. Investigation of the Vibration Spectra of Certain Ferroelectrics by the Method of Combination Scattering of Light. Sov. Phys. Solid State 1964; 5: 1299-1305.
8. Schutte C. J. H. and van Rensburg D. J. J. Low-Temperature Infrared Studies. VIII Ferroelectric Ammonium Hydrogen Sulfate and Ammonium-d₄ Deuterium Sulfate. J. Mol. Struct. 1971; 9: 77-90.
9. Acharya P. Kumara and Narayanan P. S. Vibrational Spectra of Ferroelectric Sulfates. II Rubidium Sulfate, Ammonium Sulfate and Triammonium Hydrogen Disulfate. Ind. J. Pure Apply Phys. 1973; 11: 519-521.
10. Toupry N., Poulet H. and Le Postollec M. Raman Study of the Phase Transition in RbHSO₄. J. Raman Spectrosc. 1981; 11: 81-91.
11. Mhiri T. and Colomban T. Defect-induced Smoothing of the Superionic Phase

Transition in $\text{Cs}_{1-x} \text{M}_x \text{HSO}_4$ Protonic Conductors. II Lithium Substitution. Solid State Ionics 1991; 44: 227-234.

12. Kemnitz E., Werner C. and Trojanov S. I. Structural Chemistry of Alkaline Metal Hydrogen Sulfates. A Review of new Structural Data. Part I. Synthesis, Metal and Sulfur Polyhedra. *Eur. J. Solid State Inorg. Chem.* 1996; 33: 563-580.
13. Sonneveld E. J. and Visser J. W. A new Modification of Sodium Hydrogensulphate. *Acta Cryst.* 1978; B34: 643-645.
14. Sonneveld E. J. and Visser J. W. Structure and Hydrogen Bonding of α - NaHSO_4 *Acta Cryst.* 1979; B35: 1975-1977.
15. Grimvall S. The Crystal Structure of $\text{NaHSO}_4 \cdot \text{H}_2\text{O}$. *Acta Chem. Scand.* 1971; 25: 3213-3219.
16. Gałecki J. *Preparatyka nieorganiczna*, WNT, Warszawa 1964
17. Baran J. Polarized Infrared Spectra of KHSeO_4 Single Crystal. *Spectrochim. Acta* 1986; 42A: 1365-1371.
18. Ilczyszyn M.M., Ratajczak H. and Barnes A.J. Polarized Infrared and Raman Spectra of Caesium Hydrogen Succinate Monohydrate Single Crystal. *J. Mol. Struct.* 1989; 198: 505-524.
19. Baran J., Lis T. and Ratajczak H. Structure and Polarized IR Spectra of the $\text{K}_2\text{HPO}_4 \cdot 3\text{H}_2\text{O}$ Crystal. *J. Mol. Struct.* 1989; 195: 159-174.
20. Hadzi D. Infrared Spectra of Strongly Hydrogen-Bonded Systems. *Pure Appl. Chem.* 1965; 11: 436-453.
21. Hadzi D. and Bratos S. Vibrational Spectroscopy of the Hydrogen Bond. In Schuster P., Zundel G. and Sandorfy C. ed. *The Hydrogen Bond*, North- Holland, Amsterdam, 1976: 565-611.
22. Bratos S., Lascombe J. and Novak A. vAH Stretching Band of Hydrogen Bonded Systems in Condensed Phases. In Ratajczak H. and Orville-Thomas W. J. ed. *Molecular Interactions*, Wiley, New York, 1980: 301-346.
23. Bratos S. and Ratajczak H. Profils of Hydrogen Stretching IR Bands of Molecules with Hydrogen Bonds: A Stochastic Theory II. Strong Hydrogen Bonds. *J. Chem. Phys.* 1982; 76: 77-85.
24. Goypiron A., de Villepin J. and Novak A. Raman and Infrared Study of KHSO_4 Crystal. *J. Raman Spectrosc.* 1980; 9: 297-303.

Date Received: July 24, 1998

Date Accepted: September 25, 1998